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Abstract 

Sedimentation velocity analytical ultracentrifugation is an important tool in the characterization 
of macromolecules and nanoparticles in solution.  The sedimentation coefficient distribution c(s) 
of Lamm equation solutions is based on the approximation of a single, weight-average frictional 
coefficient of all particles, determined from the experimental data, which scales the diffusion 
coefficient to the sedimentation coefficient consistent with the traditional s ~ M2/3  power law.  It 
provides a high hydrodynamic resolution, where diffusional broadening of the sedimentation 
boundaries is deconvoluted from the sedimentation coefficient distribution.  The approximation 
of a single weight-average frictional ratio is favored by several experimental factors, and usually 
gives good results for chemically not too dissimilar macromolecules, such as mixtures of folded 
proteins.  In this communication, we examine an extension to a two-dimensional distribution of 
sedimentation coefficient and frictional ratio, c(s,fr), which is representative of a more general set 
of size-and-shape distributions, including mass-Stokes radius distributions, c(M,RS), and 
sedimentation coefficient-molar mass distributions c(s,M).  We show that this can be used to 
determine average molar masses of macromolecules and characterize macromolecular 
distributions, without the approximation of any scaling relationship between hydrodynamic and 
thermodynamic parameters.    
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Introduction 
 
Sedimentation velocity analytical ultracentrifugation (SV) has a long history for the 
characterization of synthetic polymers, biological macromolecules, and viral particles.  Among 
current important applications are the study of proteins and their interactions (1-4), 
carbohydrates (5), and nanoparticles for drug delivery (6, 7).  One of the useful properties of SV 
is that the measurement takes place in free solution, and that the size-distribution is a faithful 
representation of the ensemble of particles in solution.  The hydrodynamic resolution is typically 
significantly higher than diffusion-based techniques, due to the mass dependent gravitational 
driving force of migration, but diffusional spreading of the sedimentation boundary makes both 
the hydrodynamic frictional coefficient and the molar mass experimentally accessible quantities.  
The coupled diffusion and sedimentation process is described by the Lamm equation (8), and 
significant progress in SV was stimulated in the last decade by the ability to efficiently solve this 
partial differential equation and model experimental data for non-interacting (9-17) and 
interacting (12, 18-21) macromolecular mixtures.  
 
In previous work, we have proposed the use of diffusion-deconvoluted sedimentation coefficient 
distributions c(s), computed by inversion of a Fredholm integral equation that has Lamm 
equation solutions as kernel (22-24).  In this method, the diffusion coefficient is scaled according 
to the sedimentation coefficient with a hydrodynamic scaling law D(s) based on the 
approximation of a single, weight-average frictional ratio (f/f0, which will be abbreviated in the 
following to fr).  Theoretical considerations, as well as many practical applications (25), show 
that this is a successful approximation when studying systems such as mixtures of folded 
proteins, small nucleic acids, or generally mixtures of chemically homogeneous macromolecules.  
We have shown recently, that when applied to heterogeneous interacting protein systems, the 
c(s) distributions are approximations of the asymptotic boundary predicted from Gilbert-Jenkins 
theory (26), which can be utilized for a robust boundary analysis of protein interactions to derive 
thermodynamic binding parameters, and hydrodynamic properties of the complex.  
 
An old difficulty of SV has been that the sedimentation coefficient alone reports only indirectly 
on the species molar mass.  The identification of sedimenting species can be an important 
problem in SV when applied to protein samples.  For single species, discrete species Lamm 
equation solutions, in combination with continuous segments, can be used to estimate molar 
masses (24).  However, this approach is not possible for ensembles of macromolecules 
exhibiting microheterogeneity in sedimentation coefficient.  For multi-component protein 
mixtures, we have recently developed a multi-signal technique to exploit differences in the 
protein absorbance spectra to determine the composition and identity of the complexes formed 
(27).  In conventional SV, frequently, the hydrodynamic separation has been combined with an 
analysis of the molar mass of the main species in solution by virtue of a transformation of c(s) to 
a molar mass distribution c(M) (28).  The latter is based on the observation that the most 
abundant species will be represented well by the weight-average frictional ratio, such that a 
molar mass derived from the ratio of s and D(s), via the Svedberg equation, will be a good 
estimate of the species molar mass.  This is an appropriate strategy when the sample is known to 
have similar frictional ratios, or when c(s) exhibits only a single major peak.  The c(M) approach 
implies only the traditional assumption of a 2/3 power relationship between s and M (28), and is 
applied such that microheterogeneity in mass and sedimentation coefficient can both be 



 4

accounted for.  This is important, as it is well-known that a molar mass analysis by SV of 
particles with a continuous size-distribution cannot be based on the interpretation of the time-
dependent spread of the sedimentation boundary as if arising from a single, apparent diffusion 
coefficient, but requires consideration of the heterogeneity of the sedimentation properties of the 
mixture.   
 
Nevertheless, although the scaling relationship based on a single frictional coefficient has proven 
powerful in practice, clearly many cases can be conceived where it would fail.  This includes 
protein mixtures exhibiting more than one major peak in the c(M) distribution when molar mass 
values are of interest, or mixtures of chemically heterogeneous macromolecules.  Therefore, the 
question arises how molar mass information can be reliably extracted from the SV patterns of 
such pauci-disperse or polydisperse mixtures.   
 
In the present work we examined a more general, two-dimensional size-and-shape distribution 
that is free of assumptions of scaling laws.  We have found that such a distribution can be 
conveniently calculated as c(s,fr), and be transformed to other equivalent size-and-shape 
distributions of Stokes radii, molar masses, and diffusion coefficients.  As will be shown, 
although the boundary spread does not lend itself to a high resolution in fr (and D or M), the 
additional degrees of freedom in this dimension are accompanied by surprisingly little loss of 
hydrodynamic resolution.  This provides a tool to verify if the conventional approximation of a 
scale relationship in c(s) and c(M) is warranted by the data, and to abandon it in the general 
analysis of the size-and-shape distribution c(s,fr).  
 
 
Method 
 
A differential distribution of sedimentation coefficients and frictional ratios c(s,fr) can be defined 
as  
 

 ( , ) ( , ) ( , ( , ), , )r r ra r t c s f s D s f r t dsdfχ= ∫∫     (1) 

 
with a(r,t) denoting the total signal as a function of distance from the center of rotation, r, and 
time, t, with χ(s,D,r,t) denoting the solution of the Lamm equation  
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(8), and with D(s,fr) denoting the dependence of the diffusion coefficient from the sedimentation 
coefficient and frictional ratio.   
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(with Boltzmann constant k, absolute temperature T, macromolecular partial-specific volume v , 
solvent viscosity η, and solvent density ρ) (22) This scaling law is based on the Stokes-Einstein 
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relationship and the Svedberg equation 
 

  
(1 )
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      (4) 

 
(with molar mass M, and the gas constant R) (29).  In this definition, c(s,fr) is the loading signal 
of species with s-values between s and s+ds and with fr-values between fr and fr+dfr.  This is a 
two-dimensional extension of the conventional c(s) distribution, which in the standard form is 
defined as 

 

,( , ) ( ) ( , ( , ), , )r wa r t c s s D s f r t dsχ= ∫      (5) 

 
(22).  The conventional c(s) distribution is confined to a single frictional ratio, which is typically 
determined as a weight-average frictional ratio fr,w of all sedimenting material from non-linear 
optimization of this parameter (23, 28).  It is based on the assumption that the frictional ratios of 
the sedimenting species are not too dissimilar (in particular when studying chemically 
homogeneous macromolecules, such as folded proteins), that D is not a strong function of the 
molar mass, and that the influence of diffusion on the sedimentation profiles decreases at high 
rotor speeds, where the resolution of sedimentation coefficients is highest.  As described 
previously (23), fr,w is typically well-defined by the experimental data, and this motivates the 
question if a different frictional ratio for each s-value, or, more generally, a two-dimensional 
distribution may be well-defined by the data. 
 
It is possible to transform the distribution c(s,fr) to a molar mass distribution for each s-value, 
c(s,M) 
  

( , ) ( , ) ( , ( , ), , )a r t c s M s D s M r t dsdMχ= ∫∫     (6) 

 
by multiplication with a scaling factor dM/dfr.  (This requires knowledge of the partial-specific 
volume for all molecules in the mixture; if this is unavailable or heterogeneous, only a buoyant 
molar mass can be calculated.)  The distributions c(s,M) and c(s,fr) are completely equivalent 
representations of the size-and-shape distribution of the sedimenting particles.  We give 
preference to the c(s,fr) distribution only for the computational convenience that it is better 
scaled to the information content of the sedimentation experiment, and the ease of 
parameterization honoring physical limitations of particle size and diffusion predicted by the 
Stokes-Einstein law.  The size-and-shape distribution can be transformed easily also to related 
distributions of hydrodynamic parameters, since any pair of two of the hydrodynamic and 
thermodynamic quantities s, D, M, RS, and fr , except for D and RS, determine all the others.  (If 
no estimate of v  is possible, M reduces to a buoyant molar mass Mb, and fr cannot be specified.)   
 
The distribution c(s,fr) is calculated on a discrete grid of s-values and fr-values, as  
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with a least-squares fit to the experimental data a(ri,tj), and with consideration of the systematic 
time- invariant and radial- invariant noise components bTI and βRI, which are calculated 
algebraically as described in (28, 30).  The consideration of the systematic noise components 
allows the direct boundary fit to be unbiased by the systematic offsets common in absorbance 
and interference optical systems.  The algebraic solution of Eq. 7 was calculated with the same 
approach described earlier for the c(s) distribution (22), using an adaptation of the NNLS 
algorithm to ensure non-negativity of the concentrations (22, 31).   
 
The Lamm equation solutions χ(s,D,r,t) were calculated with finite element solutions by Claverie 
(32), and at higher s-values, with the finite element solutions on a moving frame of reference 
(11), adaptively switched dependent on the value of sω2.  For covering very large s-values 
without requiring too high radial discretization, we have implemented the Lamm equation 
solutions with boundary conditions for permeable bottom described earlier (21).   
 
The following criterion was used to determine if back-diffusion will be necessary:  A 
sedimentation equilibrium distribution can be easily analytically calculated, based on mass 
conservation.  The equilibrium profile is at all times the upper limit for concentrations at radial 
values past the hinge point.  For large species, most of the material will be close to the bottom, 
and the concentration quickly decays exponentially with increasing distance from the bottom.  It 
can be determined analytically at which distance from the bottom the concentration decreases 
below a threshold, which can be set, for example, at one tenth of the experimental noise.  If this 
point is outside of the radial observation window (or the radial range to be fitted, respectively), 
back-diffusion can be safely neglected, since any effect of back-diffusion will be undetectable.  
In this case, the experimentally observed sedimentation is well described by the Lamm equation 
with boundary conditions for a permeable bottom.  This criterion was implemented in SEDFIT 
as an adaptive switch to simulate back-diffusion for small species, where it can be measured, and 
to exclude it for large species, where it is irrelevant.   This also avoids the problem that for large 
species, which generate very high concentrations close to the bottom of the solution column, 
back-diffusion likely will proceed significantly different from the predictions by the ideal Lamm 
equation for dilute solutions.   
 
The default radial discretization was ~ 50 points/mm or higher.  Much coarser grids, such as 
suggested in (17) are unable to describe a smooth boundary of large species.  Since this stage of 
calculating Lamm equation solutions typically only takes ~ 10% of the total computational time, 
a sacrifice of precision of the numerical Lamm equation solution is not warranted.  
 
The numerical solution of Eq. 7 is combined with Tikhonov-Philips regularization (33), 
penalizing the fit with the integral over the square of the second derivative of c(s,fr) both along 
the s- and the fr-dimension.  (Other regularization procedures are possible (34), such as 
maximum entropy regularization used usually in c(s) (22).)  The penalty is scaled such that the 
resulting increase in the rmsd of the fit just reaches a predetermined value signifying statistically 
still insignificant difference, based on the given number of experimental data points fitted.  A 
one standard deviation confidence level was used unless otherwise noted.  This procedure 
produces the most parsimonious distribution consistent with the experimental data, and is similar 
to the regularization strategy introduced by Provencher in the program CONTIN (35, 36), and 
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used subsequently in many other distributions, including c(s) and ls-g*(s) (37).  Regularization is 
essential to stabilize the otherwise ill-posed Fredholm integral equation Eq. 1, and to prevent 
noise from being amplified in the inversion of Eq. 7 , thus becoming the dominating feature of 
the distribution (34).  At very low signal/noise ratio, it has the property of producing broad 
peaks, indicating low information content of the data.    
  
Typically, the s-range was discretized in a square grid as sk = smin + (k-1)∆s, and the fr range as 
(fr)l = fr,min + (l-1)∆fr .  Limits are chosen such that all sedimenting material is covered, which can 
be ensured by verifying that the rmsd of the fit does not change when changing the distribution 
limits).  Also, fr values are chosen within the physical constraints on fr ( e.g., fr > 1.0).  For a 
sedimentation velocity experiment with 50,000 data points (for example, 50 scans of 10 mm 
columns with 0.001 cm radial increment), and a two-dimensional s-fr grid with 1000 species (for 
example, 100 s-values and 10 fr values) the solution of Eq. 7 takes on the order of minutes on a 
PC with a 3 GHz processor.  This enables the use of this approach for iterative analysis, for 
example, non- linear regression of the meniscus, or manual exploration of the optimal 
discretization in the s and fr dimensions.   
 
The matrix ck,l in Eq. 7 is identical to the distribution c(s,fr) except for a normalization factor, 
which for a square grid is a constant factor ∆s∆fr.  For convenience (and in contrast to the 
implementation of c(s) in the program SEDFIT), this normalization factor is currently omitted. 
As a consequence, when determining the loading concentration of species in a certain area, the 
integration c(s,fr)dsdf can be replaced with a summation over ck,l(sk,(fr)l).  Omitting 
normalization factors permits a simple mapping of the distribution into a different plane, such as 
the s-M plane, with summation over grid points representing loading concentrations.  However, a 
rectangular grid in s-fr will become distorted in other planes if normalization factors are omitted, 
and the differential distributions will differ slightly from the mapped matrices ck,l.  
 
An average molar mass of a region of the distribution can be calculated via the weight average 
sedimentation coefficient divided by the weight average diffusion coefficient 
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If taken along lines of constant s, this average corresponds to the number-average molar mass.  It 
could be argued that, since the diffusional spread is the quantity directly fitted in the analysis 
besides the s-value, the SV experiment may determine best the number-average nM  (for species 
of identical s-value).  Alternatively, a weight average molar mass can be calculated as  
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For single species and narrow peaks, the results are essentially identical, but for extended 
distributions, they assume different values.   
 
Since the dimension of highest resolution is that of the sedimentation coefficients, it can be very 
useful to define a differential sedimentation coefficient distribution by integrating over the fr 
dimension, abbreviated c(s,*). 
 

,
1

( ,*): ( , )

( ,*) ( , ( ) )
f

r r

N

k k l k r l
l

c s c s f df

c s c s f s
=

=

≈ ∆

∫

∑

     (8) 

 
This is an analogue of the c(s) distribution, except for the absence of the assumption of the 
hydrodynamic scaling relationships.  In the c(s,*) distribution fr can be different and even have 
many different values for each species.  Displaying c(s,fr) as c(s,*) permits to neglect the fr 
dimension if its resolution is too poor to be of use, or if it is not of interest.   
 
In order to display the quality of the fit, we have previously introduced the residuals bitmap (28, 
38).  It maps residual values to a pixel brightness value, linearly scaled between -.05 and 0.05 
from black to white (unless otherwise mentioned).  Radial values determine the pixel columns, 
and the scan times determine the pixel rows.  In this representation, systematic errors modeling 
the sedimentation boundary shape will generate diagonal patterns, while most systematic errors 
from instrumental imperfections will appear as horizontal and vertical features.   
 
The algorithm described above is implemented in the software SEDFIT, and available for 
download from http://dbeps.ors.od.nih.gov, or www.analyticalultracentrifugation.com. 
 
 
Results 
 
The properties of the c(s,fr) distribution were examined theoretically, first, by simulating 
sedimentation velocity profiles for systems containing mixtures of species with dissimilar 
frictional ratio in significant amounts.  In Figure 1A are shown the calculated signal profiles for a 
mixture with equal weight concentrations of a 50 kDa, 3.5 S species (fr = 1.39), a 100 kDa, 5 S 
species (fr = 1.55), and a 100 kDa, 6.5 S species (fr = 1.19), at a total loading concentration of 1 
and with a Gaussian noise of 0.005 (mimicking the typical signal-noise ratio of absorbance or 
interference optical detection).   
 
As shown in Figure 1B, the conventional c(s) distribution correctly displays the underlying s-
values.  It converges at an estimate for the weight-average frictional ratio of 1.40, which is close 
to the theoretically expected average value of 1.38.  Interestingly, the best-fit root-mean-square 
deviation (rmsd) is 0.0052, slightly above the noise of 0.0050, and a slight systematic diagonal 
trace can be discerned in the residual bitmap, indicative of a systematic small boundary misfit.  
This reflects the mismatch of the assumption in c(s) of a single average fr with the design of this 
heterogeneous mixture.  While such imperfections in the fit should be taken as an indication that 
the model assumed in the fit is not correctly reflecting the sedimentation process, the current 
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deviation may be too small to be recognized as being relevant in practice.  For this reason, as we 
have emphasized elsewhere (22-24, 28), the transition from c(s) to a c(M) distribution is 
generally not a good transformation for distributions exhibiting multiple significant peaks.  As 
can be expected in the present case, the c(M) distribution would result in erroneous estimates of 
the species masses, with peak values of 50, 87, and 129 kDa (inset in Figure 1B). 
 
The c(s,fr) distribution was calculated with an equidistant fr-grid from 1.0 to 2.0 with 0.1 steps, a 
linear s-grid from 2 S to 9S with 100 s-values, and Tikhonov-Phillips regularization at one 
standard deviation (Figure 1C).  The rmsd of the fit is 0.0050.  The difference in the fr value of 
each species can be clearly discerned, even though the fr  dimension is fairly broad for the middle 
peak, and the 5 S and the 6.5 S peaks are bounded by the maximum and minimum fr values 
permitted, respectively.  The lower bound reflects the physical constraints to frictional ratios 
larger than unity.  The c(s,fr) distribution is rescaled in Figure 2 as c(s,D), c(s,RS) and c(s,M) 
distribution.  These are equivalent representations, since any of the four parameters s, M, D (or 
RS) and fr can be calculated if two parameters are known.  The c(s,D) distribution represents 
orthogonally the two sources of information from the experimental data – unidirectional 
translation of the boundary midpoints (determining s) and bi-directional boundary spread 
(determining D).  In each of the plots, the dotted lines indicate the lines of constant fr, following 
the scaling law Eq. 3.  
 
The resolution in s can be assessed via the ‘folded up’ c(s,*) distribution, which is plotted in 
Figure 1B as a red solid line.  No loss of resolution in s is apparent here compared to the c(s) 
distribution.  In contrast to the c(M) analysis (inset Figure 1B), in c(s,fr) the integration of the 
peaks leads to number-average molar mass values of 51.1, 99.1, and 99.1 kDa.  The peak widths 
can be assessed as a second central moment of the peak molar mass distribution, resulting in 
values of 8, 25, and 24 kDa, respectively.  The latter values do not correspond to error estimates 
of the average molar mass, but are simply a measure of the width of the distribution, which, 
similarly to the width of conventional c(s) curves, is a function of a combination of factors:  the 
information content of the data, the regularization level, and finally the polydispersity of the 
material studied.  Considering the limited information content of a single SV data set, the 
average molar masses obtained are in reasonable agreement with the values underlying the 
simulation.  (It should be noted that it is a trivial exercise to get the correct molar mass values 
once the assumptions of a discrete model with three species is made.  However, as outlined 
above, this transition is not possible unless the species are strictly uniform in buoyant mass and 
hydrodynamic shape, otherwise significant underestimation of the molar mass values can occur).    
 
It is possible to envision a sedimentation coefficient distribution intermediate to the c(s,fr) 
distribution, and the conventional c(s) distribution assuming a single weight-average value of fr.  
This would be a distribution where fr is a single-valued function of s.  Such a function fr(s) can 
be derived from the two-dimensional c(s, fr) distribution by calculating the weight-average fr 
obtained at each s-value.  This is indicated in the square symbols in Figure 1B, with the color 
density indicating the signal from which each fr value is derived (obviously fr(s) will be ill-
defined where c(s,*) vanishes).  This highlights the different fr  values for each species, which are 
consistent with the values used for the simulation.  For consistency, in the same plot is also 
indicated by dotted lines the results of a segmented conventional c(s) distribution, consisting of 
three segments, each covering one c(s) peak, with fitting different average fr values for each 
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segment.  The last analysis can be performed in SEDPHAT, for example, as a refinement 
following the observation of the peak structure in conventional c(s).  This illustrates the 
connection between the different approaches, and the different assumptions made.   
 
This example highlights the utility of c(s,fr) for the analysis of mixtures of particles with 
dissimilar frictional ratio without any shape assumptions and scaling relationship of s and M.  No 
loss of hydrodynamic resolution is apparent in this case, even though the information of a single 
SV run is not sufficient to reveal the details of the molar mass distribution much beyond the 
average mass for each peak.   
 
The question arises how well the c(s,fr) distribution can resolve species under conditions where 
diffusion is predominant and the sedimentation boundaries of each species exhibit more 
substantial overlap.  This was examined with a second, similarly designed model system, but 
with smaller molecules.  Figure 3A shows the superimposed sedimentation profiles of a 6 kDa, 
1S species (fr = 1.18), a 30 kDa, 2S species (fr = 1.73), and a 30 kDa, 3S species (fr = 1.15) at 
50,000 rpm and at equimolar concentrations.  The conventional c(s) converges to a weight-
average frictional ratio of 1.29.  With diffusion dominating the macromolecular redistribution, 
the violation of the assumption of constant fr in the conventional c(s) has much more significant 
effects.  First, the rmsd is 0.0069, significantly above the noise in the data, and with the residuals 
showing significant systematic deviations (inset in Figure 3A).  Second, even though the 
presence of three species is clearly revealed, the s-values of the smallest and largest species are 
shifted to lower and higher s-values, respectively, to compensate for the overestimated 
diffusional spread of the middle species.  This compensation can take place because the s-values 
of the two other species describe migration within the leading and trailing edge of the diffusion 
envelope of the middle species.  (As shown in (24), this effect is much reduced at a higher rotor 
speed of 60,000 rpm.) As can be expected, the c(M) distribution fails (inset in Figure 3B).  In 
contrast, the c(s,fr) distribution achieves a significant improvement in the quality of fit (rmsd = 
0.0050), and a more faithful representation of both the s-values and the molar mass values, with 
6.0, 30.9, and 31.1 kDa (number-averages from integration of the peaks).  Contour maps of the 
distribution transformed to c(s,RS) and c(M,fr) are shown in Figure 3C and D.  As in the first 
example, the distributions display dissimilar resolution in s and M.  Also, as in the first example, 
the one-dimensional c(s,*) distribution, shown in red in Figure 3B, does not appear to 
significantly suffer resolution compared to the conventional c(s) distribution. 
 
An assumption of the conventional scaling relationship underlying c(s) is the existence of an 
increasing mass with increasing s-value.  This may not be fulfilled, for example, for mixtures of 
folded and unfolded macromolecules, or for mixtures of chemically dissimilar particles with 
different partial-specific volume.  Figure 4 shows the analysis of a mixture of two species, one 
with buoyant molar mass of 25.6 kDa and 3 S (corresponding, for example, to 160 kDa extended 
polymer with v = 0.84 ml/g), and one with buoyant molar mass 13.5 kDa and 4 S 
(corresponding, for example, to a folded protein of 50 kDa).  If an impostor single-species fit is 
applied, a buoyant molar mass estimate of only 9.7 kDa is obtained (with rmsd = 0.0182 
compared to 0.005 Gaussian noise), consistent with the well-known overestimation of diffusion 
if heterogeneity is unaccounted for.  The c(s) analysis also does not lead to a satisfactory fit 
(rmsd = 0.0074 with systematic residuals, as shown in the inset in Figure 4A) but resolves the 
heterogeneity.  However, examining the details, one can observe that the s-value of the faster 
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sedimenting species appears slightly elevated (due to the overestimated diffusion of the smaller 
species), as well as traces of a third apparent species at 5 S.  The transformation to c(M) leads to 
incorrect values.  With the c(s,fr) distribution, an excellent fit is found (rmsd = 0.0050), and the 
slower sedimenting species is correctly assigned the higher buoyant molar mass.  It can be 
discerned that the peaks in c(s,*) (red lines in Figure 4A) are slightly less sharp than in the c(s) 
distribution, which ind icates higher correlation in the two-dimensional parameter space.  Both 
buoyant molar masses and Stokes radii represent well the species underlying the simulation. 
 
The results from these theoretical studies suggest that it should be possible to the apply the c(s,fr) 
analysis in practice, with the expectation that the c(s,*) trace should be comparable to c(s), 
perhaps at slightly reduced resolution.  Even though it seems not possible to achieve a very high 
resolution along the fr (or mass) dimension given current experimental signal/noise ratio from a 
single SV run, one could expect the average molar mass of the c(s,fr) peaks to be a good estimate 
for species molar masses (see Figure 2C).  The validity and robustness of this approach is 
examined in the following using experimental data. 
 
Figure 5A shows SV data from a study of the oligomeric state of an extracellular domain of an 
NK receptor with a monomer molar mass of ~50.1 kDa, with ~ 13% of the mass stemming from 
glycosylation.  We have taken this data previously as an example to examine the utility of the 
estimation of molar mass by c(M) (28), and it may therefore serve as a first test case in the 
present study.  As described earlier, if the analysis is based on the assumption of the presence of 
a single sedimenting species, an apparent molar mass not far from the monomer mass is 
obtained. Because this is an underestimate due to unaccounted heterogeneity (mostly likely the 
unaccounted trace impurities) the precise value is somewhat dependent on the data selection and 
fitting limits, and with the presently chosen conditions a value of 60.1 kDa was obtained.  The 
quality of the single-species fit is surprisingly good, with an rmsd of only 0.0087, but with 
significant systematic residuals that indicate the fit is a poor description of the boundary spread 
(inset (i) in Figure 5B).  The c(s) distribution gives a much better fit (rmsd = 0.0042) and 
displays the presence of several contaminating species, but still a single major peak that permits 
the conversion to c(M), resulting in a molar mass of 90.8 kDa.  The dimeric state was confirmed 
independently by sedimentation equilibrium.  With the c(s,fr) analysis (Figure 5C), a slight 
further improvement of the fit was found (rmsd = 0.0040).  Integration of the main peak results 
in a weight-average molar mass average of 93 kDa.  Interestingly, the distribution exhibits some 
details, including a bimodal peak structure, and a 2.7 S monomeric component.  When c(s,*) 
distribution is compared with the conventional c(s) distribution, it is consistent with regard to the 
main peak, but shows some deviations with regard to the location of the low level impurities.   
 
Figure 5D shows the distribution calculated from the same data without regularization.  All 
peaks, including the dimer peak, are much sharper, suggesting much more detailed results.  
Generally, distributions without regularization have the tendency of exhibiting many baseline-
separated peaks, the number and precise location of which depends strongly on the noise in the 
data.  In the present case, for example, it can be discerned that the main peak is sub-divided in 
three.  However, their location (and existence) depends on the details of the discretization.  In 
contrast, in the presence of regularization the distribution becomes independent on the detail of 
the discretization.  Considering that the two distributions by design only differ insignificantly in 
their rmsd, it is clear that the apparent gain in detail in Figure 5D is not warranted by the data.  
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When the regularization level is raised to two standard deviations, the main peak becomes more 
symmetrical, with otherwise very similar appearance (data not shown).   
  
To explore further the response of c(s,fr) distribution for species in lower relative abundance we 
have applied it to the analysis of a sample of bovine serum albumin, which shows the well-
known series of oligomeric species.  Figure 6A shows the c(s) distribution, with the monomer 
peak at 4.5 S and the dimer peak at ~ 6.5 S, the latter amounting to approximately 10% of the 
loaded material.  The c(s,*) trace is very similar, although a slightly different s-value for the 
dimer can be discerned.  From integration of c(s,fr) in Figure 6B, average apparent molar mass 
estimates of 61 kDa and 135 kDa for the monomer and dimer are obtained, reasonably consistent 
with the expectation of a 2:1 mass ratio.  As a further example, Figure 6C shows the c(s,fr) 
distribution of a mixture of bovine serum albumin and immunglobulin G.   
 
For some applications, it is of interest to quantify trace amounts of aggregates.  For example, the 
minor species at ~ 8.5 S from conventional c(s) analysis is about 2.4% of the loading 
concentration, well above the limit for reliable detection in c(s) (24).  In the c(s,fr) and c(s,*) 
analysis, the abundance of this species is estimated at 0.8 %.  To further study this topic, 
synthetic sedimentation profiles were simulated with BSA monomer at 99% and trimer at 1% of 
the total loading concentration, with a total signal of 1.0 and Gaussian noise of 0.005.  In the c(s) 
analysis an estimated trimer fraction of 0.9% was recovered, and 0.7-0.9% in the c(s,fr) and 
c(s,*) analysis, dependent on discretization (data not shown).  However, it was not possible to 
obtain good estimates of the molar mass of the trace species due to the low signal.  Similarly, it 
is unclear if the less abundant species of Figure 6B, are assigned correct molar mass values (see 
discussion).   
 
Generally, it seems that c(s,fr) is not as well suited to the interpretation of trace components as 
compared to c(s).  This is probably due to the more ill-conditioned nature of the model of c(s,fr), 
which can make the analysis also more susceptible to experimental imperfections, such as low-
level convection, which might cause systematic errors in the data.  At present, it is unclear, for 
example, if the five minor peaks in the distribution of Figure 6C reflect faithfully the trace 
populations of contaminating macromolecules.  However, in noisy simulated data mimicking the 
same experiment with the monomeric BSA and IgG only, these minor peaks do not occur, and 
only the main peaks at the correct s-values appear (data not shown).  This shows that the 
mathematical treatment of the data in the present method does not generate such low level peaks 
as a result of amplification of random noise in the data.  More reliable information about minor 
species from experimental data can be expected by comparison with the results of more 
experiments under the same or different conditions, and ultimately their global analysis (see 
discussion).   
 
Finally, we asked if the c(s,fr) distribution can be applied to rapidly interacting systems.  As a 
test case, we considered a case of small proteins (25 kDa and 40 kDa) forming a 1:1 complex, 
where the concentration profiles are diffusionally broadened such that no distinct boundary can 
be discerned without deconvolution of diffusion.  This system was used in a previous study 
(Figure 5 in (26)), where we have shown that the conventional c(s) distributions can be regarded 
as approximations of the asymptotic boundaries from Gilbert-Jenkins theory, and that the s-
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values and amplitudes of the diffusion deconvoluted boundary components can be modeled well 
with isotherms derived on Gilbert-Jenkins theory.   
 
When the c(s,fr) distribution was applied to the same data of equimolar mixtures at varying 
concentrations, although the overall position and concentration dependence of the undisturbed 
and the reaction boundary are consistent with c(s), they do not appear to reflect the asymptotic 
boundaries from Gilbert-Jenkins theory as well as the conventional c(s) distributions (Figure 7).  
At very low concentrations and low signal/noise ratios, the c(s,fr) distribution has a slightly lower 
resolution than c(s), which makes it more difficult to discern the undisturbed and the reaction 
boundary (Figure 7E and F).  At very high concentrations and signal/noise ratio, the c(s,fr) 
distribution shows several small peaks, which may be a result of over-parameterization of the fit, 
and greater susceptibility of c(s,fr) to the approximations inherent to the application of a 
distribution of Lamm equation solutions to reaction boundaries (21) (Figure 7B).   
 
Nevertheless, the overall weight-average s-values from c(s,fr) are virtually identical to those of 
c(s) and the values calculated from the known parameters.  This can be theoretically expected, 
since the weight-average s-values only depend on mass balance considerations and a faithful 
representation of the boundary shape, and not on the boundary model representing the true 
sedimentation process (42).  As a consequence, the c(s,fr) distribution can be used for 
determining sw like any other differential sedimentation coefficient distributions.  Interestingly, 
the apparent molar mass values in the undis turbed boundary are close to that of the smaller 
species, as expected for the equimolar mixtures (26).  Further, the apparent molar mass values in 
the reaction boundary assume values in between those of the larger component and the complex 
(Figure 7B, C, and D).  This is consistent with the constant bath approximation for the 
sedimentation of reactive systems (21), which predicts that the diffusion coefficient in the 
reaction boundary will be an average between those of the larger component and the complex 
(see Eq. 6 in (21)).  
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Discussion 
 
We have described a new method to determine a two-dimensional size-and-shape distribution of 
macromolecular mixtures from the analysis of sedimentation velocity.  The distribution was 
expressed conveniently as a differential sedimentation coefficient and frictional ratio distribution 
c(s,fr), although it can be mapped into other parameters describing sedimentation and 
hydrodynamic friction, such as molar mass, diffusion coefficient, and Stokes radius.  The 
distribution is based on a linear combination of Lamm equation solutions, such that the 
resolution in the dimension of sedimentation coefficients is deconvoluted from the effects of 
diffusion.  It assumes ‘ultracentrifugal ideal’ sedimentation (39), i.e., the absence of 
macromolecular interactions and constant sedimentation and diffusion coefficients for each 
species, which can be experimentally observed, for example, for proteins at not too high 
concentrations in the presence of sufficient supporting electrolyte.   
 
Such distributions have been theoretically conceived by Gosting (40) and described by Fujita 
(39), but without practical approaches for their determination from experimental data.  Modern 
computational tools that have enabled us to address this problem anew, including the possibility 
to calculate precise Lamm equation solutions, the systematic noise decomposition adapting the 
boundary analysis to the characteristic signal offsets in the optical systems, and modern 
regularization approaches for the stable inversion of Fredholm integral equations.  As 
implemented in SEDFIT, the computational cost is not anymore prohibitive, taking on the order 
of a few minutes on a laptop PC. 
 
 
 
In particular, the regularization is an important technical point.  It is well-known that a simple 
inversion of Fredholm integral equations can magnify experimental noise, and lead to 
unwarranted detail in the distribution functions, as well as dependencies of the distribution on the 
details of the discretization.  Regularization is the standard approach to address this problem 
(34).  Following Occam’s razor, the regularization process selects the most parsimonious 
distribution statistically consistent with the data on a pre-defined confidence level.  For example, 
for data with poor signal/noise ratio, the distribution will display only very broad features, 
consistent with the information of the data, instead of series of artificial spikes.  Changing this 
confidence level and observing the effects on the calculated distribution is a useful tool to 
display how well information on a given peak region is represented by the original experimental 
data (22).  Regularization has been introduced into the dynamic light scattering analysis by 
Stephen Provencher with the program CONTIN (36), and it is widely used in other biophysical 
disciplines.  Experience with regularization in SV analytical ultracentrifugation was gained in 
recent years from the application in the c(s) (22) and the ls-g*(s) (37) distribution.  Since many 
more grid points are necessary in the two-dimensional c(s,fr) distribution as compared to the c(s) 
distribution, and since the additional dimension does not always seem to be well determined by 
the experimental data, we expect regularization to play an even more important role in c(s,fr).  
 
The c(s,fr) approach provides a comparatively ‘model- free’ (in a sense of not implying an 
explicit thermodynamic description of the system), yet diffusion-deconvoluted, sedimentation 
coefficient distribution.  We envision it as a tool to examine the distribution of sedimenting 
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macromolecules, either where the assumption of constant fr in the conventional c(s) distribution 
is unclear, or where it is known not to hold, such as frequently encountered with chemically 
heterogeneous mixtures, with unfolded macromolecules, or other structures, for example, 
dendrimers.  The examples in the present study were designed to reveal the performance of 
c(s,fr) in such cases.  In principle, with appropriate adjustment of the distribution limits in s and 
fr, the model should be large enough to accommodate any macromolecular mixture, unless 
interactions are present, e.g. in the form of hydrodynamic repulsive non- ideal sedimentation, or 
attractive macromolecular interactions.    
 
As many applications of conventional c(s) in the published literature have shown, the scaling 
relationship based on a weight-average frictional ratio is still an excellent approximation for 
obtaining a diffusion-deconvoluted, high-resolution sedimentation coefficient distribution in 
most cases when studying proteins or short nucleic acids and their interactions.  Here, the c(s,fr) 
distribution can be a tool where molar mass values of the species are of interest, and where 
possible impurities or the possible presence of microheterogeneity prohibits the substitution of a 
c(s,fr) or c(s) peak with a discrete species in a hybrid discrete/continuous distribution (41).  It can 
also be viewed as a starting point to examine the data, first, followed by judicious 
implementation of prior knowledge on the sample by switching to other models.   
 
Although the resolution in M is not very high, when applied to samples exhibiting peaks 
originating from single species, the molar mass values determined from integration of the peaks 
were typically found within a few percent of the expected from mass spectroscopy, or within the 
typical uncertainties of the partial-specific volume.  A prerequisite of this is that a good fit of the 
data is obtained.  In our experience, the precision of M-values for species in lower abundance are 
particularly dependent on the quality of fit.  In the examples tested so far, species that represent 
less than 5-10% of the sedimenting material did not reveal a reliable molar mass value in c(s,M).  
(This is different from the ability to detect the presence of sedimenting material in a certain 
interval of s-values, which has a much higher sensitivity.)   
 
If the diffusion (or frictional ratio, or molar mass) information is not sufficient to produce well-
defined peaks, this dimension can be ‘folded up’ and a sedimentation coefficient distribution 
c(s,*) is obtained, which is very similar to the conventional c(s) distribution, except for the 
absence of frictional ratio assumptions.  It may seem computationally wasteful to first allow for 
the diffusion dimension in the c(s,fr) fit, followed by disregarding this information in c(s,*).  But 
it eliminates the non-linear regression of fr,w in the conventional c(s) analysis.  A comparison of 
c(s,*) with c(s) with regard to the rmsd and the randomness of the residuals of the respective fits 
constitutes a criterion to judge whether the constant frictional ratio assumption in c(s) has to be 
rejected or not.  In our experience, the c(s,*) distribution displays surprisingly little degradation 
in hydrodynamic resolution compared to c(s).  However, when applied to interacting systems, the 
c(s,*) distribution did not seem to improve on the correspondence of c(s) with the asymptotic 
boundaries predicted from Gilbert-Jenkins theory (26).  Interestingly, the apparent molar mass 
values obtained were found to be in a range expected from the constant bath theory, which 
predicts diffusion coefficients (and apparent molar masses) of the reaction boundary to be a 
weighted average between the larger species and the complex (21). 
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In order to improve the resolution of the size-and-shape distribution, we have embarked on the 
global analysis including sedimentation velocity experiments at different rotor speeds, 
sedimentation equilibrium, and dynamic light scattering (41).  This raises additional 
computational problems of scaling the different data, and of possible variations in the loading 
concentrations in the different experiments, but has the promise of enhanced resolution of the 
diffusion domain, more reliable characterization of minor components, and self-consistent 
representation of results from different techniques.  This will be reported in a forthcoming 
communication.  Further, an extension to the global multi-signal analysis for discriminating the 
size-and-shape distributions of components with different absorbance spectra seems possible 
(27).     
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Figure Legends: 
 
 
Figure 1:  Application of c(s,fr) analysis to a model system of large macromolecules.  Panel A: 
Simulated signal profiles for a mixture of three species with 50 kDa, 3.5 S, 100 kDa, 5 S, and 
100 kDa, 6.5 S, respectively, loaded at equal weight concentrations in a solution column from 
6.0 to 7.2 cm, and sedimenting at a rotor speed of 50,000 rpm at 20ºC.  Traces were calculated in 
time- intervals of 300 sec, for a period of 15,000 sec, and 0.005 Gaussian noise was added.  For 
clarity, only every 5th scan is shown.  Panel B: c(s) analysis with maximum entropy 
regularization with P = 0.7 (black line).  The transformation of c(s) to c(M) is shown in the inset.  
The residuals bitmap of this fit is shown as inset to Panel A, scaled to +/- 0.02 black to white.    
Shown in red in panel B is the c(s,*) distribution derived from the c(s,fr) distribution by 
summation over all fr values.  The colored squares are the weight-average fr  values for each s-
value from c(s,fr) distribution, with the color density indicating the signal at each s-value.  The 
blue dotted horizontal lines are the weight-average frictional ratios for a conventional, but 
segmented c(s) model with one segment for each peak.  Panel C: The calculated c(s,fr) 
distribution is shown as two-dimensional distribution with grid lines representing the s and fr grid 
of the analysis. Below this c(s,fr) surface is shown a contour plot of the distribution projected 
into the s- fr plane, where the magnitude of c(s,fr) is indicated by contour lines at constant c(s,fr) 
in equidistant intervals of c.   
 
 
Figure 2:  Contour plots of the transformation of c(s,fr) from Figure 1 to a c(s,D) distribution 
(Panel A), a c(s,RS) distribution (Panel B) and a c(s,M) distribution (Panel C).  The dotted lines 
in indicate lines of constant fr.  The distributions are not normalized (see Methods section).   
 
 
Figure 3:  Application of c(s,fr) analysis to a model system of small macromolecules.  Panel A: 
Simulated signal profiles for a mixture of three species with 6 kDa, 1 S, 30 kDa, 2 S, and 30 
kDa, 3 S, respectively, sedimenting at equal weight concentrations at a rotor speed of 50,000 
rpm.  Traces were calculated in time- intervals of 600 sec, for a period of 30,000 sec, and 0.005 
Gaussian noise was added.  For clarity, only every 5th scan is shown.  Panel B: c(s) analysis with 
maximum entropy regularization with P = 0.9, with the corresponding c(M) distribution shown 
in the inset.  The residuals bitmap of this fit is shown as inset to Panel A, scaled to +/- 0.02 black 
to white.  Shown in red is the one-dimensional c(s,*) derived from the c(s,fr) distribution by 
summation over all fr values for each s.  Panel C and D: Calculated c(s,fr) distribution, ranging 
from 0.2 – 4 S in 0.063 S steps, and from fr = 1 – 2.2 in 0.1 steps.  Shown are the transformations 
as c(s,RS) and c(s,M), respectively.  Also shown are lines of constant frictional ratio (dotted lines 
in Panel C), and lines of constant s-value (dotted lines in Panel D).  The vertical red lines in 
Panel D indicate the true molar mass values.  
 
 
Figure 4:  Analysis of a theoretical mixture of two species with buoyant molar mass of of 25.6 
kDa and 3 S (corresponding, for example, to 160 kDa extended polymer with v = 0.84 ml/g), 
and with buoyant molar mass 13.5 kDa and 4 S (corresponding, for example, to a folded protein 
of 50 kDa).  Sedimentation was simulated under the same conditions as in Figures 1 and 3.  
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Panel A:  The c(s) distribution is shown as black line, with the residuals bitmap from the c(s) 
analysis in the inset (rmsd = 0.0074).  The red line is the c(s,*) trace from the c(s,fr) analysis, 
which is shown in Panel B as a transformation to a parameter space of buoyant molar mass and 
Stokes radius.  The dotted lines indicate directions of constant fr and constant s.  The red crosses 
are the parameters underlying the simulation, the black crosses are values resulting from 
integration of an impostor c(M) transformation of c(s). 
 
 
Figure 5:  Analysis of experimental sedimentation velocity data from the study of the oligomeric 
state of a glycosylated NK receptor fragment.  For experimental details, see (28). Panel A shows 
a representative subset of the raw data.  Panel B: c(s) analysis (black line) and transformation to 
c(M) (right inset).  The left insets are residual bitmaps from (i) a single discrete species analysis, 
(ii) the c(s) analysis, and (iii) the c(s,fr) analysis.  The red line is the c(s,*) trace of the c(s,fr) 
distribution shown in panel C.  Panel D shows the same analysis as in C, but without 
regularization. 
 
 
Figure 6: Analysis of SV data from a bovine serum albumin sample (commercial sample used 
without further purification) sedimenting at 55,000 rpm, 22ºC.  Panel A:  c(s) distribution 
(black), and c(s,*) distribution (red) derived from the c(s,fr) fit shown in Panel B.  Integration of 
the c(s,fr) peak results in an average apparent molar mass of 61 kDa (assuming a v  value of 0.73 
ml/g) for the monomer at ~4.5 S, and 135 kDa for the dimer peak at ~ 7 S, which amounts to ~ 9 
% of the total sedimenting material.  The dotted lines are lines of constant fr.  Panel C: Analysis 
of a mixture of a bovine serum albumin (taken from a different batch) with an IgG sample, 
sedimenting at 50,000 rpm, 20ºC.  Integration of the IgG peak leads to an average apparent molar 
mass of 154 kDa (assuming a v  value of 0.73 ml/g).  
 
 
Figure 7:  Application of c(s,fr) to a reaction mixture with rapid kinetics on the time-scale of 
sedimentation.  Sedimentation velocity profiles were simulated for the interaction of a protein of 
25 kDa, 2.5 S binding to a 40 kDa, 3.5S species forming a 5 S complex with a equilibrium 
dissociation constant KD = 3 µM, and a dissociation rate constant koff = 0.01/sec, studied at a 
rotor speed of 50,000 rpm.  Interference optical detection was assumed, with conventional signal 
increments of 3.3 fringes/(mg/ml) and a noise level of 0.005 fringes.  Concentrations were 
equimolar at 0.1-fold KD (blue), 0.3-fold KD (green), KD (black), 3-fold KD (red), and 10-fold KD 
(magenta).  c(s,fr) distributions were calculated with s-values from 1 to 6 S and fr values from 0.8 
to 2.0.  Panel A:  c(s,*) distributions (solid lines) and conventional c(s) distributions (dotted 
lines), both normalized to constant area.  Panels B to F:  c(s,fr) distributions mapped into the 
c(s,M) plane, at the concentrations indicated.  
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